
Associations in NIEM 0.2

Georgia Tech Research Institute

December 20, 2005

Contents

1 Requirements 1

2 Introduction 1

3 Description of Technique 2
3.1 Association Instance Syntax . 2
3.2 Multiple Associations . 3
3.3 Schema for Associations . 4

3.3.1 Element definitions . 4
3.3.2 Association type definitions 5

3.4 Association type hierarchy . 5

4 Model Normalization 6
4.1 Adapting Associations . 6

4.1.1 The Litmus Test . 7
4.1.2 Guidelines . 7

4.2 Procedure for adopting associations 7

5 Normalizing Element Uses 8
5.1 Content Elements . 8
5.2 Reference Elements . 8

5.2.1 Identifying types for reference elements 9
5.3 Procedure for Normalizing Elements 10

6 Advantages 10

7 Disadvantages 11

1 Requirements

1. Represent associations among objects such that they more closely follow
the relational data model.

1

Associations in NIEM 0.2 2

2. Represent associations as reusable types in XML Schema

3. Represent properties of an association, which are not properties of the
participants in an association

4. Represent n-ary associations when appropriate.

5. Identify the types of the base objects in an association.

2 Introduction

The GJXDM 3.0 provided many data definitions. These consisted primarily of
types and properties. Types were used to represent real-world objects. Prop-
erties were used to represent connections between these objects. These connec-
tions included:

Characteristics: Values that are specific to an object, and likely invariants of
that object

Subparts: Objects that are smaller pieces of other objects

Relationships: Connections between objects, which may be numerous and
changing

GJXDM 3.0 represented all of these connections between objects in the same
form, as RDF-like object-property-object triplets. These triplets were repre-
sented by two main XML forms: content elements and reference elements. Both
of these forms were available for each property of an object.

This proposal provides a recasting of the way types are used, and provides
for narrowing of the XML syntax for representing properties in the data model.
This should result in an easier to understand XML syntax. It should enhance
understanding by users familiar with relational databases, as it provides a rep-
resentation similar to relational databases, while maintaining the power of the
more flexible GJXDM 3.0.

Under this proposal, types will not be used only for representation of ob-
jects. In addition to object definitions, types will be defined to represent the
association between objects. These are called association objects, and the types
are association types. Associations will take the place of many GJXDM 3.0
properties.

Also outlined by this proposal is a process for simplifying the representation
of a property of an object. Where all properties were available under GJXDM
3.0 as either reference or content elements, under this proposal only one form will
be selected for each property, when possible. Some properties will be selected
to be content elements. Other properties will be defined as reference elements.
Only special exceptions will maintain both forms, on an as-needed basis.

By making these changes, the data model will achieve a more relational ba-
sis. Under the relational model, tables may be used to define objects, or to

Associations in NIEM 0.2 3

define join tables linking multiple objects. Associations fill the role of such join
tables. Similarly, in the relational model, a table either contains a value, or con-
tains a foreign key that references a value in another table. These correspond to
the content elements and reference elements of this proposal. This correspon-
dence should lead to a smooth normalization process, and greater community
acceptance and understanding of the data model.

3 Description of Technique

This technique provides simplifications and additional features to the GJXDM
and NIEM. Specifically, the techniques involve:

1. Addition of constructs to represent associations between objects

2. Normalization of the model to incorporate associations

3. Normalization of the model to select either reference or data elements,
when possible, instead of the GJXDM option of making both available.

3.1 Association Instance Syntax

The syntax for an instance of an association is simple. Take, for example, the
marriage of Adam and Barbara Smith:

<MarriageAssociation>
<SpouseRef s:ref="A"/>
<SpouseRef s:ref="B"/>
<MarriageDate>1937-05-12</MarriageDate>
<DivorceDate>1973-06-02</DivorceDate>

</MarriageAssociation>

Interpreting the above XML fragment is straightforward:

• There is an association that we call a marriage. You can tell it is an
association, and not a thing, because it is named “something association”.

• This marriage association has two spouses, a marriage date, and a divorce
date.

• One spouse is referenced as the object with the identifier A. The other
spouse is identified by the ID B.

These objects are specified elsewhere in the same XML instance: Object A
is specified as follows:

<Person s:id="A">
<PersonName>
<PersonFullName>Adam Smith</PersonFullName>

</PersonName>
</Person>

Associations in NIEM 0.2 4

Object B is specified as follows:

<Person s:id="B">
<PersonName>
<PersonFullName>Barbara Smith</PersonFullName>

</PersonName>
</Person>

Other elements in the association specify more information about the asso-
ciation:

<MarriageDate>1937-05-12</MarriageDate>
<DivorceDate>1973-06-02</DivorceDate>

The marriage date and divorce date are specific to the relationship between
the two spouses, and so is a natural fit for an element of the association.

3.2 Multiple Associations

An object may be involved in multiple associations, each of which is represented
independently. The examples below all occur within a single XML instance, and
all refer to the same object with identifier A. In this case, the object A is a person,
who is an employee, a spouse, a parent, and a child.

<EmployerEmployeeAssociation>
<EmployeeRef s:id="A"/>
...

</EmployerEmployeeAssociation>

<MarriageAssociation>
<SpouseRef s:id="A"/>
...

</MarriageAssociation>

<ParentChildAssociation>
<ParentRef s:id="A"/>
...

</ParentChildAssociation>

<ParentChildAssociation>
<ChildRef s:id="A"/>
...

</ParentChildAssociation>

3.3 Schema for Associations

The definition of an association is composed of several parts:

Associations in NIEM 0.2 5

1. An element that identifies the specific semantics of the association.

2. A type for the association. The type may be have precise semantics, or
may be a more generally defined type.

3.3.1 Element definitions

For each semantically distinct association, we define an element. Each element
will have annotations indicating the specific meaning of the association. Such
documentation is not shown in this document, but follows the guidelines estab-
lished for GJXDM 3.0. The syntax is standard XML Schema. For example,
here is the definition for a parent-child element:

<xs:element
name="ParentChildAssociation"
type="ParentChildAssociationType"/>

We may wish to define a more-specific type of parent-child association. For
example, an adoptive parent-child association:

<xs:element
name="AdoptiveParentChildAssociation"
type="ParentChildAssociationType"/>

If we wanted to make the type specific to an adoptive parent-child situation,
then we define a new type, instead of reusing the general parent-child type.

3.3.2 Association type definitions

The definition of types for associations is done as needed, depending on the
content of the types. We do not, as a rule, define a new type for each use or
semantic definition of an association. Instead, we define them as necessary, to
accommodate the content required. Here is an example definition for a type for
the parent-child association:

<xs:complexType name="ParentChildAssociationType">
<xs:complexContent>
<xs:extension base="u:AssociationType">
<xs:sequence>
<xs:element ref="this:ParentRef" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="this:ChildRef" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Associations in NIEM 0.2 6

The type definition has several parts:

1. The name of the type is “something AssociationType”. This makes asso-
ciations between objects distinct from other types of object definitions.

2. The type is derived from another association type. This allows definition
of type hierarchies for associations, and the definition of characteristics
that are shared across multiple association types.

3. The content of the association is a sequence of elements. The content of
the association could be entirely related objects. The association could
also contain characteristics of the associations, such as dates, names, iden-
tifiers, etc.

3.4 Association type hierarchy

The use of a type hierarchy is a useful feature, but should not be overused. In
the examples so far, we have seen the following:

1. A root association type, which helps group association types.

2. An association type for a parent-child association. This type had a parent
and a child.

3. An association type for the marriage association.

We may wish to insert into this list of types a root type for all interpersonal
associations. This, however, may be over-design, due to several factors:

1. What content would go into a generalized interpersonal association? All
we would know is that the participants were people. A list of PersonRef
elements is not very useful, and does not provide any semantics. The ele-
ments defined at this stage would have to be discarded to provide concrete
meaning (such as spouse, parent, and child).

2. What makes an association interpersonal? Is it just that there are two
people participating in the association? Would an employer-employee be
an interpersonal relationship, if the employer were an individual? Would
an offender-victim relationship be interpersonal? What if the victim was
an organization?

3. Due to restrictions of XML Schema, we only have single-inheritance avail-
able in our toolbox; a type may have at most only a single parent. These
sorts of place-holder types have limited usefulness, as they cannot be com-
bined together to provide useful meaning.

Use of type inheritance should be carefully considered. Keep in mind that
common types may be inserted into the type hierarchy later in model develop-
ment.

Associations in NIEM 0.2 7

4 Model Normalization

Many users found the GJXDM 3.0 schemas difficult to use, as they were not
very constraining on the structure of XML that conformed to the model. Links
between objects were kept as flexible as possible, to accommodate a wide variety
of usage. Under NIEM 0.2, the data model will be simplified, to take advantage
of users’ familiarity with the relational model, and to simplify usage patterns.

This normalization takes two forms:

1. Separating associations between objects from the definitions of the objects
themselves

2. Selection of either reference or local-content elements, when possible

Both normalization steps help the data model achieve a more regular struc-
ture. This should be more easily understood by people with experience with
relational databases, and should provide for more uniform implementations.

4.1 Adapting Associations

There are numerous considerations in adapting and defining associations. We
need a method of distinguishing associations from other methods of connecting
objects. We must understand to what degree we should specialize or generalize
associations. Third, we need procedures for refactoring the GJXDM 3.0 data
model to accommodate associations.

4.1.1 The Litmus Test

A type is an association among objects (i.e. an AssociationType should be
created to relate the objects) if and only if:

1. The related objects are peers of one another and not simply a defining
characteristic of or subpart of the other object(s). The term peers is used
in a data modeling sense to mean that each object being related has its
own set of characteristic property values independently of the other.

2. Each related object can exist independently, that is, it does not dependent
on the existence of the association or the other object(s). In other words,
none of the objects being related should lose meaning if separated from
the others.

3. The association has its own characteristic attributes (properties) that ei-
ther cause or result from the existence of the association. These attributes
are characteristic of the association and define its nature or distinguish it
from other associations and objects.

Associations in NIEM 0.2 8

4.1.2 Guidelines

1. New associations should be identified based on requirements or use within
IEPDs, not simply because they exist, or may be used someday.

2. Exploit the relational properties that are already in the model (particu-
larly within the PersonType and ActivityType)

3. To avoid enumerating all associations, there may be general association
types to create as the basis for others (e.g., Association, Kinship, etc.)

4. Conversion of each simple pair-wise property to an association will require
consensus on names for:

(a) The association itself

(b) All objects related by the association

(c) The properties of the association

4.2 Procedure for adopting associations

There are several steps involved in adopting associations. These are:

1. Remove the GJXDM 3.0 RelationshipType. This has the side effect of
eliminating the terms subject and object from the schemas.

2. Create a new AssociationType to act as the base type for all relationships.

3. For each existing type in the current model:

(a) Decide if the type represents a relationship (association) or an object
by applying the litmus test.

(b) If object, leave it to be derived from SuperType or a type derived
from SuperType.

(c) If association, derive it instead from AssociationType, or a type de-
rived from AssociationType.

5 Normalizing Element Uses

The next step in normalizing the data model is selecting the representation
for specific element uses. Under GJXDM 3.0, all elements within types were
represented two ways:

1. A content element

2. A reference element.

Associations in NIEM 0.2 9

5.1 Content Elements

Content elements enclose data. The following is an example:

<Person s:id="A">
...
<PersonName>
<PersonFullName>Adam Smith</PersonFullName>

</PersonName>
...

</Person>

In this example, there is a person object. The person contains an ele-
ment called PersonName. The PersonName element contains an element called
PersonFullName. The PersonFullName element contains a string Adam Smith.
The PersonFullName element is obviously a content-containing element. It has
the person’s name (a literal string) as its content.

The PersonName is also a content-containing element, as its content repre-
sents the person name, as a structured object. It contains the element Person-
FullName, and could contain additional elements.

5.2 Reference Elements

Reference elements do not enclose content. Instead, they reference content as
external objects:

<Incident>
<ActivityDate>2003-10-02</ActivityDate>
...
<IncidentSeizedPropertyRef s:ref="C"/>
...

</Incident>

In the above example, the property that was seized as part of the incident
is referenced out to another object, an XML object in the same XML instance,
with the identifier C.

<Property s:id="C">
<PropertyDescriptionText>
White microwave oven

</PropertyDescriptionText>
<PropertyTypeCode>HOVEN</PropertyTypeCode>
<PropertyMakeName>Kenmore</PropertyMakeName>
<PropertyModelName>63292</PropertyModelName>

</Property>

The object that has the identifier C is an instance of Property, specifically
representing a microwave oven. The reasons for representing the microwave oven

Associations in NIEM 0.2 10

outside of the incident should be quite evident: it is its own object, independent
of the incident. It has its own life cycle. If the incident did not exist, the
microwave oven would still exist.

The seized property is an element of the incident because it is a fixed part of
the incident. The incident involved the seizing of the property, and that will not
change. However, the incident should be a reference element, as the property
has its own life cycle, outside of the incident.

5.2.1 Identifying types for reference elements

All reference elements are of the same XML Schema type: ReferenceType from
the structures namespace. However, we would like to validate the XML Schema
type of the thing to which the reference is referring (the referred object). For
example:

<IncidentSeizedPropertyRef s:ref="C"/>

For IncidentSeizedProperty, we would like the XML Schema type of the
referred object to be PropertyType, or something derived from that type. XML
Schema does not help us here, because it does not support type checking of
reference targets. XML Schema supports XML:ID and XML:IDREF types, but
the constraints applied to them are few: no ID may be defined more than once,
and any IDREF must refer to a defined ID. Beyond that, XML Schema does
not help.

To define the type of referred objects, we add additional non-XSD infor-
mation to the schema, which we may interpret with programs, stylesheets, or
constraint languages. This additional information is added to the element defi-
nitions, and concretely specifies the type of referred objects.

<xs:element name="IncidentSeizedPropertyRef"
type="s:ReferenceType">

<xs:annotation><xs:appinfo>
<i:referenceTarget i:name="PropertyType"/>

</xs:appinfo></xs:annotation>
</xs:element>

In this example, the incident seized property is specifically defined to be of
type PropertyType in the same namespace. Following XML Schema rules, we
would expect the target of the reference to be of type PropertyType, or of a
type properly derived from PropertyType.

5.3 Procedure for Normalizing Elements

For each existing element occurring in a type:

1. If the element links to a peer object, or to an independent object, then
define it as a reference element

Associations in NIEM 0.2 11

2. If the element constitutes a characteristic or subpart of the containing
object, then define it as an in-line content element

3. If the element should be an association, then

(a) remove it from the containing type

(b) create a new association type for it

(c) add the containing type as a related object

(d) add the type of the original element as a related object, and

(e) add properties for the association, as needed

6 Advantages

1. Relationships modeled as associations are similar to the relational data
model.

2. All relationships have their own type definitions.

3. Many objects become smaller and have simpler content to represent.

4. There are fewer alternative representations. Each component is fixed as
either in-line or referenced content. (Of course, this also requires a decision
for each component).

5. Adding an association has minimal or no impact on other objects.

6. The data model might be more directly represent-able in UML (because
it is more relational).

7 Disadvantages

1. References to IDs are more difficult to process, and will add overhead

2. IDs are required for all reference-able components.

3. XML Schema cannot validate that the references to object IDs are valid
objects with the correct types.

(a) The structure of both objects and associations can still be validated
independently.

(b) Other means besides XML Schema could be used to validate the
types of referenced objects.

